

High-Performance Flow Battery with Inexpensive Inorganic Reactants

Mike Perry & James Saraidaridis, UTRC Team Members: MIT, Pennsylvania State University, LBNL

Project Vision

A new flow battery system that uses simple, inexpensive reactants and innovative electrolyte balance methods to deliver long duration electricity storage.

Total project cost:	\$3.87M
Length	33 mo.

The Concept

- Alkaline Sulfur/Manganese¹ chemistry
- Electrolyte Takeover Process (ETP)

The Team

VIDNX ENERGY

"Breakthrough Flow-Battery Stack" developed by UTRC

UTRC's VRFB cells use same material set as other VRFB cells

Commercialization by VionX Energy

The Team

 UTRC: flow battery design, performance, modelling, and commercialization

 Hickner Group (PSU): polymer membrane synthesis & characterization

Brushett Group (MIT): flow battery design, performance, and modelling

Weber Group (LBNL): flow battery modeling & membrane characterization

Project Objectives

Q#	Power Density (mW/cm²)	EE (%)	Energy Density (Wh/L)	ASR (Ω-cm²)	Capacity Loss (%/cycle)	Cycles (#)	Cycle Duration (hours)	ETP Frequency (Cycles/ETP)
Q4	25	80	≥ 30	< 3.0	< 0.4	25	5	NA
Q8	75	80	≥ 40	< 1.0	< 0.1	200	5	5
Q11	100	80	≥ 40	< 1.0	< 0.01	500/20	5/20	10

Challenges and Potential Partnerships

Challenges:

- System performance
- System stability at extreme pHs
 - Demonstrated for inorganic systems: AVRFBs are pH <1, S/Mn likely pH >14

Potential Partnership Areas:

- Non-fluorinated wetted materials for oxidative alkaline conditions
- Metallic flow battery electrodes
- Polysulfide catalysts

